Land Cover Classification from Multi-temporal, Multi-spectral Remotely Sensed Imagery using Patch-Based Recurrent Neural Networks
نویسندگان
چکیده
Sustainability of the global environment is dependent on the accurate land cover information over large areas. Even with the increased number of satellite systems and sensors acquiring data with improved spectral, spatial, radiometric and temporal characteristics and the new data distribution policy, most existing land cover datasets were derived from a pixel-based singledate multi-spectral remotely sensed image with low accuracy. To improve the accuracy, the bottleneck is how to develop an accurate and effective image classification technique. By incorporating and utilizing the complete multi-spectral, multitemporal and spatial information in remote sensing images and considering their inherit spatial and sequential interdependence, we propose a new patch-based RNN (PB-RNN) system tailored for multi-temporal remote sensing data. The system is designed by incorporating distinctive characteristics in multi-temporal remote sensing data. In particular, it uses multi-temporal-spectralspatial samples and deals with pixels contaminated by clouds/shadow present in the multi-temporal data series. Using a Florida Everglades ecosystem study site covering an area of 771 square kilometers, the proposed PB-RNN system has achieved a significant improvement in the classification accuracy over pixel-based RNN system, pixel-based single-imagery NN system, pixel-based multi-images NN system, patch-based single-imagery NN system and patch-based multi-images NN system. For example, the proposed system achieves 97.21% classification accuracy while a pixel-based single-imagery NN system achieves 64.74%. By utilizing methods like the proposed PB-RNN one, we believe that much more accurate land cover datasets can be produced over large areas efficiently.
منابع مشابه
vegetation change detection using multi-temporal remotly sensed data during recent three decades by artificial intelligence technique (Case study: protected area of Bashgol)
Quantitative and qualitative information of vegetation and its changes in duration of time as a basic foundation of determination of habitat quality, priority of protected area and also determination of price of ecosystem services in order to optimum management of natural resources and sustainable development is a very important technical point. In other hand, researchers are interested in rem...
متن کاملClassification of Multi-spectral, Multi-temporal and Multi-sensor Images Using Principal Components Analysis and Artificial Neural Networks: Beykoz Case
The thematic maps derived from remotely-sensed images are invaluable sources of information for various investigations since they provide spatial and temporal information about the nature of Earth surface materials and objects. The robustness of classification techniques used to produce these thematic maps can be crucial especially for complex classification problems. This study aims to determi...
متن کاملRemote Sensing Analysis of Land Cover Change
In Australia, remotely sensed Landsat data is routinely used for mapping and monitoring changes in the extent of woody perennial vegetation. Time series remotely sensed satellite imagery and ground information is used to form multi-temporal classifications of presence/absence of woody cover. Two broad-scale operational land cover change and monitoring projects are based on a series of algorithm...
متن کاملA Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data
Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...
متن کاملCrop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images
Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1708.00813 شماره
صفحات -
تاریخ انتشار 2017